Supplementary Materials for "Comparing costs associated with Risk Stratification Rules for t-year Survival"

Tianxi Cai

Department of Biostatistics, Harvard University, Boston, MA, USA tcai@hsph.harvard.edu

LU TIAN

Department of Health Research & Policy, Stanford University, Stanford, CA, USA lutian@stanford.edu

DONALD M. LLOYD-JONES

Department of Preventive Medicine, Northwestern University, Chicago, IL, USA

APPENDIX

A. OPTIMAL RISK STRATIFICATION RULE

To show the optimality of $R^{opt}(z)$, we note that an optimal rule assigns subjects with Z=z to the kth risk category if and only if for any $l \neq k$,

$$\mathfrak{C}_z(k) = E\left\{Yc_{1k} + (1-Y)c_{0k} \mid Z=z\right\} \leqslant E\left\{Yc_{1l} + (1-Y)c_{0l} \mid Z=z\right\} = \mathfrak{C}_z(l).$$

This implies that for any $l \neq k$,

$$\mu_0(z)c_{1k} + \{1 - \mu_0(z)\}c_{0k} \leq \mu_0(z)c_{1l} + \{1 - \mu_0(z)\}c_{0l}$$

and thus $\mu_0(z)\{(c_{1k}-c_{0k})-(c_{1l}-c_l)\}\leqslant c_l-c_{0k}$. Coupled with the fact that $c_{1k}-c_{0k}>c_{1l}-c_l,l>k$ and $c_{1k}-c_{0k}< C_{l'}^{(1)}-c_l,l'< k$, we have $P_{kl'}\leqslant \mu_0(z)\leqslant P_{kl}$, for any pair of (l',l) such that l'< k< l. It follows that the optimal rule would assign a subject with Z=z to the kth category if and only if $\max_{0\leqslant l\leqslant k-1}P_{kl}\leqslant \mu_0(z)\leqslant \min_{k+1\leqslant l\leqslant K+1}P_{kl}$. If $\max_{0\leqslant l\leqslant k-1}P_{kl}\leqslant \mu_0(z)\leqslant \min_{k+1\leqslant l\leqslant K+1}P_{kl}$ and $\max_{0\leqslant l\leqslant k'-1}P_{k'l}\leqslant \mu_0(z)\leqslant \min_{k'+1\leqslant l\leqslant K+1}P_{k'l}$, then the expected costs associated with assigning subjects with $\mu_0(z)$ to the kth category and to k'th category are equal. For such settings, without loss of generality, one may assign such subjects to category $\min(k,k')$. This concludes that $R^{opt}(z)$ minimizes $\mathfrak{C}_z(R)$.

B. ASYMPTOTIC DERIVATION FOR THE ESTIMATED EXPECTED COST

We assume that the true conditional risk function $\mu_0(z)$ is continuously differentiable with derivative function $d\mu_0(z)/dz$ bounded away from 0 almost everywhere. Through-

out, we also assume that the bandwidth $h=O(n^{-\nu})$ with $1/5\leqslant \nu<1/2$. Let $\widetilde{\mathfrak{C}}(m,H)=n^{-1}\sum_{i=1}^n\mathfrak{C}_i(m,H),\ \mathfrak{C}(m,H)=E\{\widetilde{\mathfrak{C}}(m,H)\},\ \text{where}\ V_i(t)=I(X_i\leqslant t)\delta_i+I(X_i>t)\ \text{and}\ \mathfrak{C}_i(m,H)=\eta\{Y_i,m(Z_i)\}V_i(t)/H(t\wedge X_i).$ Then $\mathfrak{C}(m)=\mathfrak{C}(m,G)$ and $\widetilde{\mathfrak{C}}(m)=\widetilde{\mathfrak{C}}(m,\widehat{G}).$ We first write

$$\left| n^{-1} \sum_{i=1}^{n} \mathfrak{C}_{i}(\widetilde{\mu}, \widehat{G}) - \mathfrak{C}(\mu_{0}) \right| \leq \left| n^{-1} \sum_{i=1}^{n} \left\{ \mathfrak{C}_{i}(\widetilde{\mu}, \widehat{G}) - \mathfrak{C}_{i}(\mu_{0}, G) \right\} \right| + \left| n^{-1} \sum_{i=1}^{n} \mathfrak{C}_{i}(\mu_{0}, G) - \mathfrak{C}(\mu_{0}) \right|.$$

By a law of large numbers, $n^{-1}\sum_{i=1}^n\mathfrak{C}_i(\mu_0,G)-\mathfrak{C}(\mu_0)=o_p(1)$. Thus, a sufficient condition for the consistency of $\widetilde{\mathfrak{C}}(\widetilde{\mu})$ is that $n^{-1}\sum_{i=1}^n\{\mathfrak{C}_i(\widetilde{\mu},\widehat{G})-\mathfrak{C}_i(\mu_0,G)\}=o_p(1)$. To show that this condition holds, we note that since $\eta\{Y_i,m(Z_i)\}$ is bounded by a constant $\eta_0, |n^{-1}\sum_{i=1}^n\{\mathfrak{C}_i(\widetilde{\mu},\widehat{G})-\mathfrak{C}_i(\widetilde{\mu},G)\}| \leq n^{-1}\sum_{i=1}^n\eta_0|\widehat{G}(t\wedge X_i)^{-1}-G(t\wedge X_i)^{-1}|$. This and the uniform consistency of $\widehat{G}(\cdot)$ (Kalbfleisch and Prentice, 2002) imply that $n^{-1}\sum_{i=1}^n\{\mathfrak{C}_i(\widetilde{\mu},\widehat{G})-\mathfrak{C}_i(\widetilde{\mu},G)\}=o_p(1)$. It remains to show that $n^{-1}\sum_{i=1}^n\{\mathfrak{C}_i(\widetilde{\mu},G)-\mathfrak{C}_i(\widetilde{\mu},G)\}=o_p(1)$. This convergence holds if for any given non-negative bounded function $\xi(\cdot,\cdot)$,

$$\widetilde{\epsilon}_{\xi k} = n^{-1} \sum_{i=1}^{n} \{ I(\widetilde{\mu}(Z_i) > p_k) - I(\mu_0(Z_i) > p_k) \} \xi(X_i, D_i) = o_p(1),$$
(B.1)

To show (B.1), we let $A_{\xi}(u) = E[I\{\mu_0(Z_i) > u\}\xi(X_i,D_i)]$, $\widetilde{\varepsilon}_{\mu} = \sup_z |\widetilde{\mu}(z) - \mu_0(z)|$, $\widetilde{\epsilon}_A = \sup_u |n^{-1}\sum_{i=1}^n I\{\mu_0(Z_i) > u\}\xi(X_i,D_i) - A_{\xi}(u)|$, and note that $|\widetilde{\epsilon}_{\xi k}| \leqslant n^{-1}\sum_{i=1}^n I\{p_k + \widetilde{\varepsilon}_{\mu} \geqslant \mu_0(Z_i) > p_k - \widetilde{\varepsilon}_{\mu}\}\xi(X_i,D_i) \leqslant 2\widetilde{\epsilon}_A + |A_{\xi}(p_k + \widetilde{\varepsilon}_{\mu}) - A_{\xi}(p_k - \widetilde{\varepsilon}_{\mu})|$. By a uniform law of large numbers (Pollard, 1990), $\widetilde{\epsilon}_A = o_p(1)$. On the other hand, using the same arguments as given in Cai et al (2008), we have $\widetilde{\varepsilon}_{\mu} = o_p(n^{-1/4})$. This, together

with the continuity of $A_{\xi}(u)$, implies that $\widetilde{\epsilon}_{\xi k} = o_p(1)$ and hence the consistency of $\widetilde{\mathfrak{C}}(\widetilde{\mu})$. To derive the asymptotic distribution for $\widetilde{\mathbb{W}} = n^{\frac{1}{2}}\{\widetilde{\mathfrak{C}}(\widetilde{\mu}) - \mathfrak{C}(\mu_0)\} = n^{\frac{1}{2}}\{\widetilde{\mathfrak{C}}(\widetilde{\mu}, \widehat{G}) - \mathfrak{C}(\mu_0, G)\}$, we write $\widetilde{\mathbb{W}} = \widetilde{\mathbb{W}}_1 + \widetilde{\mathbb{W}}_2 + \widetilde{\mathbb{W}}_3$, where $\widetilde{\mathbb{W}}_1 = n^{\frac{1}{2}}\{\widetilde{\mathfrak{C}}(\widetilde{\mu}, \widehat{G}) - \widetilde{\mathfrak{C}}(\widetilde{\mu}, G)\}$, $\widetilde{\mathbb{W}}_2 = n^{\frac{1}{2}}\{\widetilde{\mathfrak{C}}(\widetilde{\mu}, G) - \widetilde{\mathfrak{C}}(\mu_0, G)\}$, $\widetilde{\mathbb{W}}_3 = n^{\frac{1}{2}}\{\widetilde{\mathfrak{C}}(\mu_0, G) - \mathfrak{C}(\mu_0, G)\}$. For $\widetilde{\mathbb{W}}_1$, we first note that for $s \leqslant t$,

$$n^{\frac{1}{2}} \left\{ \frac{G(s)}{\widehat{G}(s)} - 1 \right\} \simeq n^{-\frac{1}{2}} \sum_{i=1}^{n} \int_{0}^{s} \frac{dM_{i}(u)}{\operatorname{pr}(X \geqslant u)}$$
 (B.2)

converges weakly to a zero-mean Gaussian process indexed by s (Kalbfleisch and Prentice, 2002), where $M_i(u) = I(X_i \le u, \delta_i = 0) - \int_0^u I(X_i \ge u) d\Lambda_C(u)$ and $\Lambda_C(\cdot)$ is the cumulative hazard function for the common censoring variable C. It follows that $\widetilde{\mathbb{W}}_1$ is asymptotically equivalent to

$$n^{-\frac{1}{2}} \sum_{i=1}^{n} \left\{ \int_{0}^{t} \gamma(u) dM_{i}(u) \right\},$$
 (B.3)

where $\gamma(u) = E[\eta\{Y, \mu_0(Z)\}I(T \geqslant u)]/\text{pr}(X \geqslant u)$.

For $\widetilde{\mathbb{W}}_2$, we write

$$\widetilde{\mathbb{W}}_{2} = n^{-\frac{1}{2}} \sum_{i=1}^{n} \sum_{k=1}^{K-1} d_{0k} w_{i} \{1 - p_{k}^{-1} Y_{i}\} \left[I\{\widetilde{\mu}(Z_{i}) > p_{k}\} - I\{\mu_{0}(Z_{i}) > p_{k}\} \right]$$

$$= \sum_{k=1}^{K-1} \int \left[I\{\widetilde{\mu}(z) > p_{k}\} - I\{\mu_{0}(z) > p_{k}\} \right] dn^{1/2} \widehat{H}_{k}(z)$$

where $w_i=V_i(t)/G(t\wedge X_i)$ and $\widehat{H}_k(z)=n^{-1}\sum_{i=1}^n d_{0k}w_i\{1-p_k^{-1}Y_i\}I(Z_i\leqslant z)$. By a standard empirical process theory (Pollard, 1990) $n^{\frac{1}{2}}\{\widehat{H}_k(z)-\widetilde{H}_k(z)\}$ converges weakly to a zero-mean Gaussian process, where $\widetilde{H}_k(z)=n^{-1}\sum_{i=1}^n d_{0k}\{1-p_k^{-1}\mu_0(Z_i)\}I(Z_i\leqslant z)$. This, together with Lemma 1 of Bilias and others (1997), implies that $\widetilde{\mathbb{W}}_2$ is asymp-

totically equivalent to $\widetilde{\varepsilon}_1 + \widetilde{\varepsilon}_2$, where

$$\widetilde{\varepsilon}_{1} = n^{-\frac{1}{2}} \sum_{i=1}^{n} \sum_{k=1}^{K-1} d_{0k} \{1 - p_{k}^{-1} \mu_{0}(Z_{i})\} I\{\widetilde{\mu}(Z_{i}) > p_{k}, \mu_{0}(Z_{i}) \leqslant p_{k}\}$$

$$\widetilde{\varepsilon}_{2} = -n^{-\frac{1}{2}} \sum_{i=1}^{n} \sum_{k=1}^{K-1} d_{0k} \{1 - p_{k}^{-1} \mu_{0}(Z_{i})\} I\{\widetilde{\mu}(Z_{i}) \leqslant p_{k}, \mu_{0}(Z_{i}) > p_{k}\}$$

It follows from $\widetilde{\varepsilon}_\mu=\sup_z |\widetilde{\mu}(z)-\mu_0(z)|=o_p(n^{-1/4})$ that

$$0 \leqslant \widetilde{\varepsilon}_1 \leqslant n^{-\frac{1}{2}} \sum_{i=1}^n \sum_{k=1}^{K-1} d_{0k} \{ 1 - p_k^{-1} \mu_0(Z_i) \} \left[I \{ \mu_0(Z_i) > p_k - \widetilde{\varepsilon}_\mu \} - I \{ \mu_0(Z_i) > p_k \} \right].$$

Furthermore, the process $\Gamma(t) = n^{-\frac{1}{2}} \sum_{i=1}^{n} \sum_{k=1}^{K-1} [d_{0k} \{1 - p_k^{-1} \mu_0(Z_i)\}] [I\{\mu_0(Z_i) > p_k - t\} - I\{\mu_0(Z_i) > p_k\}] - \{\zeta(\mathbf{p} + t) - \zeta(\mathbf{p})\}]$ is stochastic continuous at t = 0, where

$$\zeta(\bar{\mathbf{p}}) = E\left[\sum_{k=1}^{K-1} d_{0k} \{1 - p_k^{-1} \mu_0(Z)\} I\{\mu_0(Z) > \bar{p}_k\}\right], \quad \bar{\mathbf{p}} = (\bar{p}_1, \dots, \bar{p}_K)',$$

and $\mathbf{p}=(p_1,\cdots,p_K)'$. Thus, $\hat{\epsilon}_1$ is bounded above by $\sup_{|t|\leqslant\widehat{\epsilon}_m}n^{1/2}\{\zeta(\mathbf{p}+t)-\zeta(\mathbf{p})\}$. Now, since the expected cost function $\zeta(\bar{\mathbf{p}})$ is minimized at $\bar{\mathbf{p}}=\mathbf{p}$, $\partial\zeta(\bar{\mathbf{p}})/\partial\bar{\mathbf{p}}=0$ when $\bar{\mathbf{p}}=\mathbf{p}$. Therefore, $0\leqslant\widetilde{\epsilon}_1\leqslant O_p(n^{1/2}\widetilde{\epsilon}_\mu^2)$ and thus $\widetilde{\epsilon}_1=o_p(1)$. Similarly, $\widetilde{\epsilon}_2=o_p(1)$. It follows that $\widetilde{\mathbb{W}}_2=o_p(1)$. This, combined with (B.3), implies that $\widetilde{\mathbb{W}}\simeq n^{-\frac{1}{2}}\sum_{i=1}^n\mathbb{W}_i$, where $\psi_{\mathbb{W}i}=\int_0^t\gamma(u)dM_i(u)+\mathfrak{C}_i(\mu_0,G)-\mathfrak{C}(\mu_0,G)$. By a Central Limit Theorem, $\widetilde{\mathbb{W}}$ converges to a normal with mean 0 and variance $\sigma^2=E(\psi_{\mathbb{W}i}^2)$.

C. Asymptotic Properties of $\widehat{\mathbb{C}}(\widehat{\mu}_{\widehat{\boldsymbol{\beta}}})$

In this section, we show that $\widehat{\mathbb{C}}(\widehat{\mu}_{\widehat{\beta}})$ converges to $\mathbb{C}(\mu_{\beta_0})$ in probability as $n \to \infty$ and derive the asymptotic distribution for $\widehat{\mathbb{W}}$. We assume that \mathbf{Z} is bounded and $\mu_{\beta}(x)$ is con-

tinuously differentiable with respect to both $\boldsymbol{\beta}$ and x and $\partial \mu_{\boldsymbol{\beta}_0}(x)/\partial x$ is bounded away from 0 almost everywhere. Furthermore, we assume that $\boldsymbol{\beta}_0^{\mathsf{T}}\mathbf{Z}$ is a continuous random variable with a continuously differentiable density. The consistency of $\widehat{\mathbb{C}}(\widehat{\mu}_{\widehat{\boldsymbol{\beta}}})$ follows from the same arguments as given in Appendix B provided that $\widehat{\varepsilon}_m = \sup_{\mathbf{Z}} |\widehat{\mu}_{\widehat{\boldsymbol{\beta}}}(\mathbf{Z}) - \mu_{\boldsymbol{\beta}_0}(\mathbf{Z})| = o_p(n^{-1/4})$. Thus, it remains to establish the convergence rate of $\widehat{\varepsilon}_m$. To this end, we note that

$$\widehat{\varepsilon}_m \leqslant \sup_{x} |g_0\{\widehat{\theta}_{\widehat{\beta}}(x)\} - g_0\{\theta_{\beta_0}(x)\}| + \sup_{\mathbf{Z}} |g_0\{\theta_{\beta_0}(\widehat{\boldsymbol{\beta}}^{\mathsf{T}}\mathbf{Z})\} - g_0\{\theta_{\beta_0}(\boldsymbol{\beta}_0^{\mathsf{T}}\mathbf{Z})\}|.$$

where $\theta_{\beta}(x) = g_0^{-1} \{ \text{pr}(Y_i = 1 | \boldsymbol{\beta}^{\mathsf{T}} \mathbf{Z} = x) \}$. From Uno et al (2007) and Cai et al (2008), we have

$$n^{\frac{1}{2}}(\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0) = n^{-\frac{1}{2}} \sum_{i=1}^n \mathbf{W}_{Bi} + o_p(1) = O_p(1),$$
 (C.1)

and
$$\sup_{x} |\widehat{\theta}_{\widehat{\beta}}(x) - \theta_{\beta_0}(x)| = O_p\{(nh)^{-\frac{1}{2}} \log(n)^2\},$$
 (C.2)

where

$$\mathbf{W}_{Bi} = \mathbb{A}^{-1} \left[w_i \mathbf{Z}_i \{ Y_i - g(\boldsymbol{\beta}_0^\mathsf{T} \mathbf{Z}_i) \} + \int_0^t \boldsymbol{\gamma}_B(u) dM_i(u) \right],$$

$$\mathbb{A} = E \{ \dot{g}(\boldsymbol{\beta}_0^\mathsf{T} \mathbf{Z}_i) \mathbf{Z}_i \mathbf{Z}_i^\mathsf{T} \}, \quad \boldsymbol{\gamma}_B(u) = \frac{E \left[\mathbf{Z}_i \{ Y_i - g(\boldsymbol{\beta}_0^\mathsf{T} \mathbf{Z}_i) \} I(T_i \geqslant u) \right]}{\mathsf{pr}(X \geqslant u)},$$

and $\dot{g}(x)=dg(x)/dx$. This, together with the boundedness of $\partial \mu_{\beta_0}(x)/\partial x$ and ${\bf Z}$, implies that

$$\widehat{\varepsilon}_m \leqslant O_p\{(nh)^{-\frac{1}{2}}\log(n)^2 + n^{-\frac{1}{2}}\} = o_p(n^{-1/4}),$$

since $h^{-1}=o_p(n^{1/2})$. The consistency of $\widehat{\mathbb{C}}(\widehat{\mu}_{\widehat{\boldsymbol{\beta}}})$ follows immediately.

To approximate the distribution of $\widehat{\mathbb{W}} = n^{\frac{1}{2}} \{ \widehat{\mathbb{C}}(\widehat{\mu}_{\widehat{\boldsymbol{\beta}}}) - \mathbb{C}(\mu_{\beta_0}) \}$, we write $\widehat{\mathbb{W}} = \widehat{\mathbb{W}}_1 + \widehat{\mathbb{W}}_2 + \widehat{\mathbb{W}}_3$, where $\widehat{\mathbb{W}}_1 = n^{\frac{1}{2}} \{ \widehat{\mathbb{C}}(\widehat{\mu}_{\widehat{\boldsymbol{\beta}}}, \widehat{G}) - \widehat{\mathbb{C}}(\widehat{\mu}_{\widehat{\boldsymbol{\beta}}}, G) \}$, $\widehat{\mathbb{W}}_2 = n^{\frac{1}{2}} \{ \widehat{\mathbb{C}}(\widehat{\mu}_{\widehat{\boldsymbol{\beta}}}, G) - \widehat{\mathbb{C}}(\mu_{\beta_0}, G) \}$,

$$\widehat{\mathbb{W}}_3 = n^{\frac{1}{2}} \{ \widehat{\mathbb{C}}(\mu_{\beta_0}, G) - \mathbb{C}(\mu_{\beta_0}) \},$$

$$\widehat{\mathbb{C}}(\mu,G) = n^{-1} \sum_{i=1}^n \mathbb{C}_i(\mu,H), \quad \text{and} \quad \mathbb{C}_i(\mu,H) = \frac{V_i(t) \eta\{Y_i,\mu(\mathbf{Z}_i)\}}{H(t \wedge X_i)}.$$

Following similar arguments as given in Appendix B with the uniform consistency of $\widehat{\mu}_{\widehat{\mathcal{B}}}(x)$ given in (C.2), we have

$$\widehat{\mathbb{W}}_1 = n^{-\frac{1}{2}} \sum_{i=1}^n \int_0^t \gamma_{\mathbb{C}}(u) dM_i(u) + o_p(1)$$

where $\gamma_{\mathbb{C}}(u) = E[\eta\{Y_i, \mu_{\beta_0}(\mathbf{Z}_i)\}I(T \geqslant u)]/\text{pr}(X \geqslant u)$. Next, we express $\widehat{\mathbb{W}}_2$ as

$$\sum_{k=1}^{K-1} \left(\int I[g_0\{\widehat{\theta}_{\widehat{\beta}}(x)\} > p_{k-1}] d\widehat{H}_k(x; \widehat{\beta}) - \int I[g_0\{\theta_{\beta_0}(x)\} > p_{k-1}] d\widehat{H}_k(x; \beta_0) \right)$$

$$= \sum_{k=1}^{K-1} \int \left(I[g_0\{\widehat{\theta}_{\widehat{\beta}}(x)\} > p_{k-1}] - I[g_0\{\theta_{\beta_0}(x)\} > p_{k-1}] \right) dn^{\frac{1}{2}} \widehat{H}_k(x; \widehat{\beta})$$

$$+ \sum_{k=1}^{K-1} \int I[g_0\{\theta_{\beta_0}(x)\} > p_{k-1}] dn^{\frac{1}{2}} \left\{ \widehat{H}_k(x; \widehat{\beta}) - \widehat{H}_k(x; \beta_0) \right\}$$

where $\widehat{H}_k(x;\boldsymbol{\beta}) = n^{-1} \sum_{i=1}^n d_{0k} w_i (1-Y_i p_k^{-1}) I(\boldsymbol{\beta}^\mathsf{T} \mathbf{Z}_i \leqslant x)$. It follows from the standard empirical process theory (Pollard, 1990) and the convergence of $n^{\frac{1}{2}}(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}_0)$ given in (C.1) that $n^{\frac{1}{2}}\{\widehat{H}_k(x;\widehat{\boldsymbol{\beta}})-\widetilde{H}_k(x;\boldsymbol{\beta}_0)\}$ converges weakly to a zero mean Gaussian process, where $\widetilde{H}_k(x;\boldsymbol{\beta}_0) = n^{-1} \sum_{i=1}^n d_{0k} w_i \{1-\mu_{\boldsymbol{\beta}_0}(\mathbf{Z}_i)p_k^{-1}\} I(\boldsymbol{\beta}_0^\mathsf{T} \mathbf{Z}_i \leqslant x)$. This, together with same arguments as given in Appendix B, implies that

$$\sum_{k=1}^{K-1} \int \left(I[g_0\{\widehat{\theta}_{\widehat{\beta}}(x)\} > p_{k-1}] - I[g_0\{\theta_{\beta_0}(x)\} > p_{k-1}] \right) dn^{\frac{1}{2}} \widehat{H}_k(x; \widehat{\beta}) = o_p(1)$$

Furthermore, let $\bar{H}_k(x; \boldsymbol{\beta}) = E\{\hat{H}_k(x; \boldsymbol{\beta})\}$. It follows from the functional central limit theorem (Pollard, 1990) that $n^{\frac{1}{2}}\{\hat{H}_k(x; \boldsymbol{\beta}) - \bar{H}_k(x; \boldsymbol{\beta})\}$ converges weakly to a zero mean Gaussian process in $(x, \boldsymbol{\beta})$ and thus is equicontinuous in $\boldsymbol{\beta}$. Combining this with the expansion for $\hat{\boldsymbol{\beta}}$ given in (C.1), we have

$$n^{\frac{1}{2}}\{\widehat{H}_{k}(x;\widehat{\boldsymbol{\beta}}) - \widehat{H}_{k}(x;\boldsymbol{\beta}_{0})\} = \mathbf{A}_{k}(x;\boldsymbol{\beta}_{0})^{\mathsf{T}}n^{\frac{1}{2}}(\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}_{0}) + o_{p}(1) = n^{-\frac{1}{2}}\sum_{i=1}^{n} \mathbf{W}_{Bi}^{\mathsf{T}}\mathbf{A}_{k}(x;\boldsymbol{\beta}_{0})$$

 $\mathbf{A}_k(x;\boldsymbol{\beta}) = \partial \bar{H}_k(x;\boldsymbol{\beta})/\partial \boldsymbol{\beta}$. It follows that

$$\widehat{\mathbb{W}}_2 = n^{-\frac{1}{2}} \sum_{i=1}^n \mathbf{W}_{Bi}^{\mathsf{T}} \left(\sum_{k=1}^{K-1} \int I[g_0\{\theta_{\beta_0}(x)\} > p_{k-1}] d\mathbf{A}_k(x; \boldsymbol{\beta}_0) \right) + o_p(1).$$

Therefore, $\widehat{\mathbb{W}} = n^{-\frac{1}{2}} \sum_{i=1}^{n} \zeta_{\mathbb{W}i} + o_p(1)$, where

$$\zeta_{\mathbb{W}i} = \int_0^t \gamma_{\mathbb{C}}(u) dM_i(u) + \mathbf{W}_{Bi}^{\mathsf{T}} \sum_{k=1}^{K-1} \int I[g_0\{\theta_{\boldsymbol{\beta}_0}(x)\} > p_{k-1}] d\mathbf{A}_k(x; \boldsymbol{\beta}_0)$$
$$+ \mathbb{C}_i(\mu_{\boldsymbol{\beta}_0}, G) - \mathbb{C}(\mu_{\boldsymbol{\beta}_0}). \tag{C.3}$$

Then it follows from a central limit theorem that $\widehat{\mathbb{W}}$ converges in distribution to a normal with variance $E(\zeta^2_{\mathbb{W}i})$.

REFERENCES

BILIAS, YANNIS, GU, MINGGAO AND YING, ZHILIANG. (1997). Towards a general asymptotic theory for Cox model with staggered entry. *The Annals of Statistics* **25**(2), 662–682.

KALBFLEISCH, J. D. AND PRENTICE, ROSS L. (2002). *The Statistical Analysis of Failure Time Data*. John Wiley & Sons.

POLLARD, D. (1990). *Empirical Processes: Theory and Applications*.. Hayward, CA: Institute of Mathematical Statistics.